WHERE DID THAT <u>ONE</u> COME FROM?

Dr. Stan Hartzler

Archer City High School

The number one appears from out of nowhere, or so it seems, in a variety of places in algebra. The concept of "default value" certainly applies. Providing a list such as the following may be helpful to students:

$$a + 4a = 1a + 4a = 5a$$

$$a \bullet a^3 = a^1 a^3 = a^4$$
 and $\frac{a^{10}}{a} = \frac{a^{10}}{a^1} = a^9$

 $2x + 2 = 2x + 2 \cdot 1 = 2(x + 1)$ and $y^2 + y = y^2 + 1 \cdot y = y(y + 1)$

$$\frac{3}{3x+6} = \frac{1 \cdot 3}{3(x+2)} = \frac{1}{x+2} \quad \text{and} \quad \frac{a^3}{a^5} = \frac{1 \cdot a^3}{a^5} = \frac{1}{a^2}$$

$$\frac{a}{3} + b = \frac{a}{3} + \frac{b}{1} = \dots$$

Algebra: Addends & Products & Powers

Dr. Stan Hartzler Archer City High School

As a high school freshman in 1961, this writer had trouble with much of the basic simplification material that follows. Listing a few instructive examples inside the back cover of his Algebra One textbook was extremely helpful. The list grew as the course progressed.

The writer's students are encouraged to paste a list like this inside the back covers of their algebra textbooks, or to write a similar list, for quick reference. Several weeks of getting things right is often needed before independence is obtained.

Addends	Products	Powers		
$3+3+3+3 = 4\cdot 3$ $\sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{3} = 3\sqrt{2} + \sqrt{3}$ $x + x + x + y = 3x + y$ $y^{2} + y^{2} + y^{2} + y^{4} = 3y^{2} + y^{4}$ $3z^{2} + 2z^{2} = 5z^{2}$	$3 \cdot 3 \cdot 3 \cdot 3 = 3^{4} = 81$ $\sqrt{2}\sqrt{2} = 2$ $\sqrt{2}\sqrt{3} = \sqrt{6}$ $a^{3} \cdot a^{2} = a^{5}$ $3w^{3} \cdot 2w^{2} = 6w^{5}$	$a^{2^{3}} = a^{6}$ $\sqrt{2}^{2} = 2$ $x^{\frac{3}{4}} = \sqrt[4]{x}^{3}$ $x^{-1} = \frac{1}{x} \qquad y^{-2} = \frac{1}{y^{2}}$ $3p^{2^{4}} = 81p^{8}$		

Quadratic Formula Development and Graph

Dr. Stan Hartzler Archer City High School

When you can't factor a _____ like $y = f(x) = 2x^2 + 3x + 2 = 0$,

(A) complete the square, which no one does outside of courses. (B) graph; look for _____

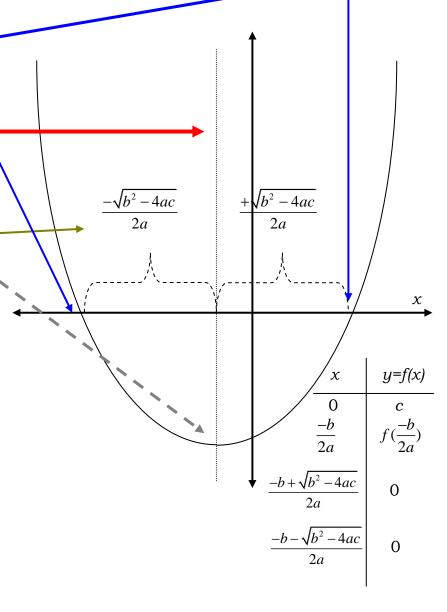
(C) use the quadratic formula: Given $y = f(x) = ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

steps	$y = f(x) = 2x^2 + 3x + 2 = 0$	$y = f(x) = ax^2 + bx + c = 0$
1. Isolate the terms containing <i>x</i> on the left, with spaces. Non- <i>x</i> constant number must be alone on the right.	1	
2. If coefficient of x^2 is not one, divide each term by coefficient of x^2 .	2,4,5	
3. Set up completion of square structure: parentheses and exponent, with <i>x</i> , + or –, and half of <i>x</i> coefficient		
4. Complete square above structure with (half of x coefficient) ² , added to both sides.	3,5	
5. Add the terms on the right side.	6	
 6. Write the square root of both sides, using a ± symbol in front of the radical sign on the right side. 	7	
7. Solve for x.		

- 1. Solutions/roots/zeroes/answers:
 - If a > 0, $x = \frac{-b + \sqrt{b^2 4ac}}{2a}$ $x = \frac{-b \sqrt{b^2 4ac}}{2a}$
- **2.** Axis of symmetry: $x = \frac{-b}{2a}$
- **3. Vertex:** $\left(\frac{-b}{2a}, f(\frac{-b}{2a})\right)$ _ _ _ _ _
- **4.** Discriminant: $\sqrt{b^2 4ac}$
 - If **Discriminant = 0**, then the "two" solutions are equal to each other **ONE solution** in reality. The "two" intersections with the *x* axis are ONE in reality and are the vertex.
 - If **Discriminant < 0**, then the "two" solutions are imaginary **NO real solutions**. There are no intersections with the *x* axis.
 - If Discriminant > 0, then there really are TWO unequal real solutions, and they differ because of the ± choice. The x = ^{-b}/_{2a} symmetry value is an average of the two roots therefore.

Notes:

• If *a* < 0, the whole parabola gets turned upside down.



4

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx + = -c$$

$$\frac{ax^{2}}{a} + \frac{bx}{a} + = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} \cdot \frac{4a}{4a}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

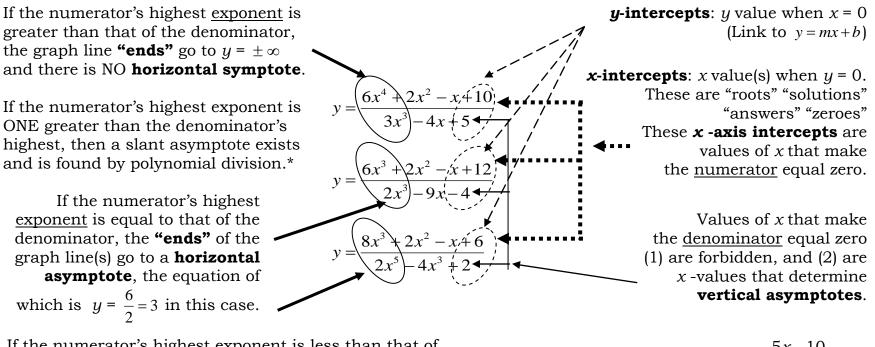
$$x + \frac{b}{2a} = \frac{\pm\sqrt{b^{2} - 4ac}}{2a}$$

$$-\frac{b}{2a} = -\frac{b}{2a}$$

$$x = \frac{-b \pm\sqrt{b^{2} - 4ac}}{2a}$$

For a quiz or exam, one may omit the second line and still get full credit.

Rational Functions Extravaganza



If the numerator's highest <u>exponent</u> is less than that of the denominator, the **"ends"** of the graph line go to y = 0, the *x* axis, which is the **horizontal asymptote**.

$$2x+4 + \frac{3x-10}{3x^3-4x+5}$$

$$3x^3-4x+5\overline{\smash{\big)}6x^4+0x^3+4x^2-x+10}$$

$$\underline{6x^4+0x^3-8x^2+10x}$$

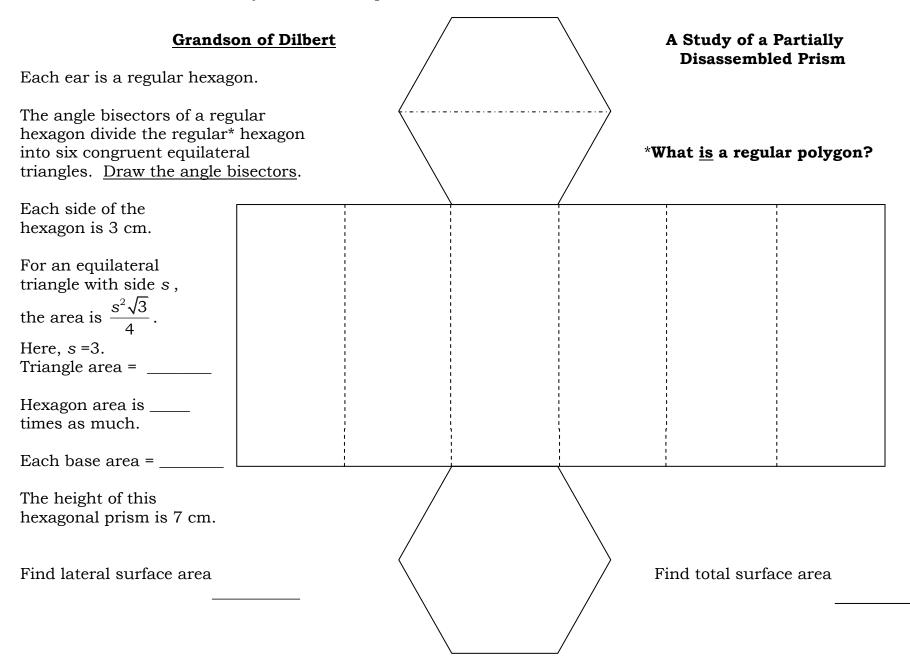
$$12x^2-11x+10$$

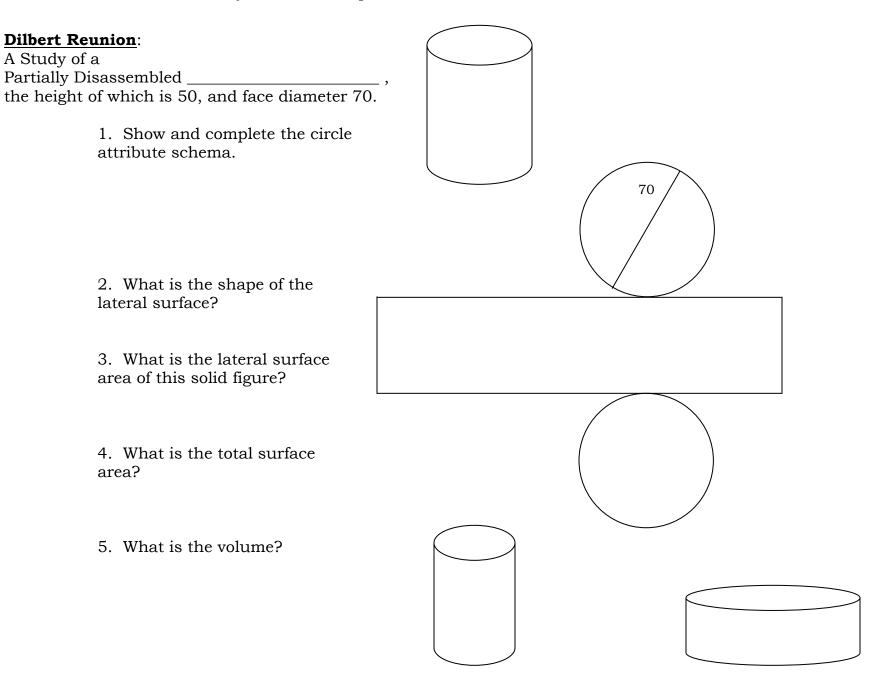
$$\underline{12x^2-16x+20}$$

$$5x-10$$

*Slant asymptote here:

Equation of slant asymptote is y = 2x + 4y





Cevians and Construction Lines/Rays/Segments (CLRS) in Triangles

A *cevian* is a line or segment (a) contains the vertex of a triangle (or tetrahedron) and (b) intersects the opposite side (or face). A median is a cevian. An angle bisector is a cevian since it is a ray with the vertex as the end point. An altitude is often a cevian, but two altitudes of an obtuse triangle are not. Perpendicular bisectors are cevians only when they are also altitudes.

There is no general name for a triangle's four **C**onstruction **L**ines/**R**ays/**S**egments listed below, nor for the intersections. Proposed: *celers*, for CLRS, for construction line/ray/segment, and *celers intersections*.

"C'LERS"	"C'LERS" Intersection Point	Significance		
Angle bisector (ray)	Incenter	center of inscribed triangle		
Perpendicular bisector (line) Circumcenter		center of circumscribed circle		
Median* (segment)	Centroid	center of mass; centroid divides each medians into parts with 2:1 ratio		
Urthocontor		is vertex for three other triangles that replicate orthocenter concept***		

* Medians are segments connecting vertices to midpoints of opposite sides. Each median cuts the triangle into two triangles of equal areas. All three medians of a triangle form six triangles of equal area.

- ** Together, the three altitudes of an acute triangle divide the triangle into six triangles, which are similar to each other in pairs by virtue of vertical angles.
- ***If **P** is the orthocenter for $\triangle ABC$, then **A** is the orthocenter for $\triangle PBC$, **B** is the orthocenter for $\triangle APC$, and **C** is the orthocenter for $\triangle ABP$.

The circumcenter, orthocenter, and centroid all lay on the Euler line.

If a triangle's vertices are a, b, c, d, and e, f, the centroid coordinates are $\left(\frac{a+c+e}{3}, \frac{b+d+f}{3}\right)$.

Radius *r* of inscribed circle, given triangle sides *a*, *b*, and *c*: s = semiperimeter; $r = \sqrt{\frac{s-a + s-b + s-c}{s}}$

Radius *R* of circumscribed circle, given any side of a triangle *a* and the opposite angle A: $R = \frac{a}{2 \sin A}$

Statement Classification and Truth Tables

Dr. Stan Hartzler Archer City High School

<u>Simple statements:</u>

p: You made good grades.

q: Your parents bought your Porsche.

<u>Negations:</u> ("It is false that...")

~*p*: You didn't make good grades.

~q: Your parents didn't buy your Porsche.

Compound Statements

Conjunction: $p \land q$ You made grades and your parents bought your Porsche. Disjunction: $p \lor q$ You made grades or your parents bought your Porsche.

Conditional Statements:

Implication: $p \rightarrow q$ If you make grades, then parents will buy your Porsche.Double implication: $p \leftrightarrow q$ You make grades if and only if your parents buy your Porsche.

р	q	~ p	~q	$p \wedge q$	$\boldsymbol{p} \lor \boldsymbol{q}$	$oldsymbol{p} ightarrow oldsymbol{q}$	$oldsymbol{p} \leftrightarrow oldsymbol{q}$
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	F	Т	T*	F
F	F	Т	Т	F	F	T**	Т

Truth Values

* You didn't make good grades, but your parents bought you the car anyway. The rule is not broken. ** Again, the rule is not broken.