Quadratic Formula Development and Graph Dr. Stan Hartzler Archer City High School

When	you can't factor a	1	ike $y = f(x) = 2x^2 + 3x + 2$	=0,
(A)	complete the square, which	no one does outside of courses.	(B) graph; look for	
(C)	use the quadratic formula:	Given $y = f(x) = ax^2 + bx + c = 0$,	then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	

steps	$y = f(x) = 2x^2 + 3x + 2 = 0$	$y = f(x) = ax^2 + bx + c = 0$
1. Isolate the terms containing <i>x</i> on the left, with spaces. Non- <i>x</i> constant number must be alone on the right.	1	
2. If coefficient of x^2 is not one, divide each term by coefficient of x^2 .	2,4,5	
3. Set up completion of square structure: parentheses and exponent, with x , + or $-$, and half of x coefficient		
4. Complete square above structure with (half of <i>x</i> coefficient) ² , added to both sides.	3,5	
5. Add the terms on the right side.	6	
6. Write the square root of both sides, using a ± symbol in front of the radical sign on the right side.	7	
7. Solve for x.		

1. Solutions/roots/zeroes/answers:

If
$$a > 0$$
, $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

- 2. Axis of symmetry: $x = \frac{-b}{2a}$
- 3. Vertex: $(\frac{-b}{2a}, f(\frac{-b}{2a}))$ — — —
- **4. Discriminant**: $\sqrt{b^2-4ac}$
 - If **Discriminant = 0**, then the "two" solutions are equal to each other **ONE solution** in reality. The "two" intersections with the *x* axis are ONE in reality and are the vertex.
 - If **Discriminant < 0**, then the "two" solutions are imaginary **NO real solutions**. There are no intersections with the *x* axis.
 - If **Discriminant** > **0**, then there really are **TWO unequal real** solutions, and they differ because of the \pm choice. The $x = \frac{-b}{2a}$ symmetry value is an average of the two roots therefore.

Notes:

• If *a* < 0, the whole parabola gets turned upside down.

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx + = -c$$

$$\frac{ax^{2}}{a} + \frac{bx}{a} + = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} \cdot \frac{4a}{4a}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \frac{\pm\sqrt{b^{2} - 4ac}}{2a}$$

$$-\frac{b}{2a} = -\frac{b}{2a}$$

$$x = \frac{-b \pm\sqrt{b^{2} - 4ac}}{2a}$$

For a quiz or exam, one may omit the second line and still get full credit.