Connection: Form and Number Definitions

Dr. Stan Hartzler Archer City High School

1		Form	is	Number		
2	a s	≅	1S to	=		
3	a s	\overline{AB}	is to	AB		
4	a s	$\angle DFG$	is to	m∠DFG		
5	a s	complementary, supplementary: "merging forms to right angle or straight angle"	is to	complementary, supplementary: "measures add to 90° and 180°"		
6	a s	perpendicular lines: "lines meeting to form adjacent congruent angles (Euclid)"	is to	perpendicular lines: "lines meeting to form 90° angles or angles of equal measure"		
7	a s	straight angle: "union of opposite rays with a common vertex"	is to	straight angle: "angle with measure of 180°"		
8	a s	diameter: "chord containing the center"	is to	diameter: " chord with measure = 2r"		
9	a s	parallel lines (in a plane) and parallel planes: "never intersecting"	is to	parallel lines and planes: "everywhere equidistant"		
1 0	a s	MEDIAN CONSTRUCTION	is to	EQUATION OF MEDIAN		
1 1	a s	ALTITUDE CONSTRUCTION	is to	LENGTH/EQUATION OF ALTITUDE		
1 2	a s	PARALLEL LINES BY CONSTRUCTION	is to	PARALLEL LINES BY EQUAL SLOPES		
1 3	a s	PERPENDICULAR LINES BY CONSTRUCTION	is to	PERPENDICULAR LINES BY SLOPE RELATIONSHIP		

1	а	"TAPESTRY" ACTIVITY	is	"TAPESTRY" ANALYSIS
4	S	COLUMN	to	COLUMN
1	а	Э	is	Э
5	S	-	to	•

Discussion

The original idea for the page-one chart is a "sound-bite" definition of mathematics:

Mathematics is the study of the invariant (unchanging) aspects of number and form.

Geometry lends itself strongly to study of both number and form. The proof aspect of a geometry course, for example, allows for use of both the number definition of an idea and the form definition of the same idea to justify steps in the same two-column proof. An example follows.

Theorem: <u>Vertical angles are congruent</u>.

- 1. Vertical angles A and B as shown.
- $\angle A, \angle X$ are supplementary; 2.
- $\angle B, \angle X$ are supplementary
- 3. $\begin{array}{l} m \angle A + m \angle X = 180^{\circ}; \\ m \angle B + m \angle X = 180^{\circ} \end{array}$
- 4. $m \angle A + m \angle X = m \angle B + m \angle X$ $-m \angle X \qquad -m \angle X$

5.
$$m \angle A = m \angle B$$

6.
$$\angle A \cong \angle B$$

Given: Vertical angles A and B as shown.

Prove: $\angle A \cong \angle B$

Reasons

- 1. Given
- 2. "Supplementary" (form)
- 3. "Supplementary" (number)
- 4. Transitive
- 5. Subtraction
- 6. "≅"