Geometric Representation of Means

after Dr. Titu Andrescu

Given two quantities a and b represented by segments of these respective lengths, the means can be represented and compared geometrically. The means are identified as follows:

- arithmetic mean AM = $\frac{a+b}{2}$
- geometric mean GM = \sqrt{ab}
- harmonic mean HM = $\frac{2ab}{a+b}$

• root mean square RMS =
$$\sqrt{\frac{a^2 + b^2}{2}} = \frac{\sqrt{a^2 + b^2}}{\sqrt{2}}$$

- 1. Draw diameter \overline{AB} .
- 2. Construct midpoint at C
- 3. Construct circle, center at C and radius controller at B.
- 4. Locate D on \overline{AB} , not at C.
- 5. Construct \perp at C.
- 6. Construct intersection point of circle and \perp at E.
- 7. Construct CE and hide perpendicular line. CE = AM
- 8. Construct perpendicular at D.
- 9. Construct intersection point of circle and \perp at H.
- 10. Construct *DH* and hide perpendicular line. *DH* = GM, as $\triangle AHB$ is a right triangle.
- 11. Copy \overline{AD} and rotate it 90° about center A.
- 12. Copy \overline{BD} and rotate it 270° about center *B*.
- 13. Construct "guy wire" segments $\overline{AQ} \& \overline{PB}$ and intersection point F.

Why this is on DH is a mystery at present. The length of DF is half the HM as in the Two Pole problem.

- 14. Copy \overline{DF} and rotate the copy 180° with center F. \overline{GD} = HM
- 15. Copy \overline{DB} and rotate the copy 270° with center D. New end is L.

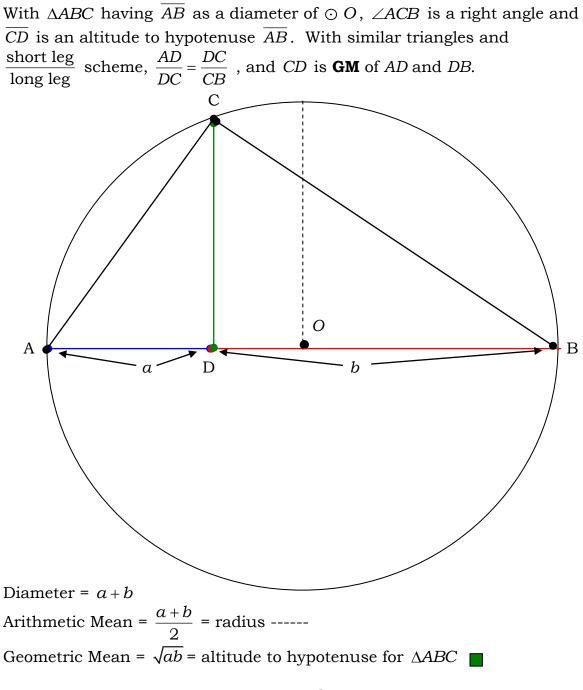
16. Construct
$$\overline{AL}$$
. $AL = \sqrt{a^2 + b^2}$

17. Construct midpoint of \overline{AL} . Select the midpoint as a center of rotation.

19. Copy AL and rotate it 90° though center. New endpoints are P and J. Why J is on circle at end of radius from D is a mystery at present.

20. $DJ = JM = MP = PD = \sqrt{\frac{a^2 + b^2}{2}} = \frac{\sqrt{a^2 + b^2}}{\sqrt{2}} = RMS$, longer than AM radius. Conclusion: RMS $\ge AM \ge GM \ge HM$.

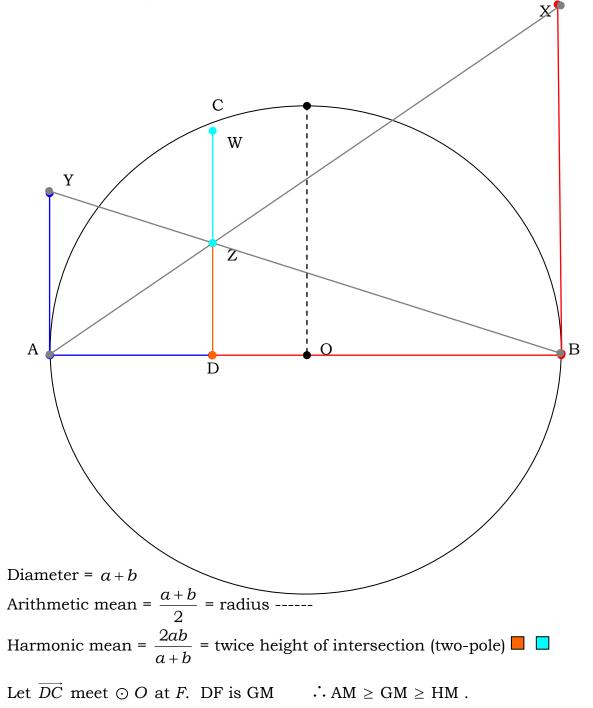
Geometric Representation of Geometric Mean



 \therefore AM \ge GM

Geometric Representation of Harmonic Mean

 \overline{AY} is a copy of \overline{AD} and is \perp to \overline{AD} . \overline{XB} is a copy of \overline{BD} and is \perp to \overline{BD} . $\overline{XA} \otimes \overline{BY}$ are drawn, intersecting at *Z*, and \overline{ZD} is drawn \perp to \overline{AB} . By the "two-pole" principle, *ZD* is half the harmonic mean of *EY* and *XF*. \overline{ZD} is extended to twice its length to *W*, and *DW* is the desired harmonic mean of $\overline{AD} \otimes \overline{DB}$, of *a* and *b*.



Geometric Representation of Root Mean Square

 $\square DMNB$, dimensions $a \times b$, is constructed with diagonals, which bisect each other. \overline{MB} is copied and located as \overline{PQ} , \perp bisector to \overline{MB} . MB = $PQ = \sqrt{a^2 + b^2}$. Each side of $\Box PMQB$ is $\frac{\sqrt{a^2 + b^2}}{\sqrt{2}}$, **RMS** of *a* and *b*. Side \overline{PB} is drawn in yellow and copied beside smaller radius = **AM**. Ρ D В А b а а aΜ b Diameter = a + bArithmetic mean = $\frac{a+b}{2}$ = radius -----Q Geometric mean = \sqrt{ab} = altitude to hypotenuse for $\triangle ABC$ Harmonic mean = $\frac{2ab}{a+b}$ = twice height of intersection (two-pole) Root mean square = $\sqrt{\frac{a^2 + b^2}{2}} = \frac{\sqrt{a^2 + b^2}}{\sqrt{2}}$ = side of square with diagonal $=\sqrt{a^2+b^2}$ \square \therefore RMS \geq AM \geq GM \geq HM