Reciprocal Function vs. Inverse Function for Trigonometry

Dr. Stan Hartzler Archer City High School

<u>Reciprocal vs. inverse function</u> confusion is easily acquired in trigonometry. In algebra, we think of reciprocal and multiplicative inverse in the same breath, or should.

A. **<u>Basic function</u>** distinction

- I. **<u>Inverse</u> functions** for y = f(x) are what you get when
 - a. Switching x and y in functions and solving for y
 - b. Switching the x and y in ordered pairs like (-5, 20) or in charts
 - c. Reflecting a graph across the y = x line (at 45°)
 - d. Writing $f^{-1}(x)$
- II. **<u>Reciprocal</u>** functions for y = f(x) are what you get when
 - a. Writing a fraction with numerator = 1 and denominator = f(x).
 - b. On graphs, switching asymptotes with zeroes and switch 0 < y < 1 with $\infty > y > 1$, and similarly below the *x*-axis
 - c. Writing $(f(x))^{-1}$

B. **<u>Trigonometric function</u>** distinction

I. Inverses of trig functions are written like

 $\sin^{-1}(x) = \arcsin(x)$. A <u>principal value</u> is Arcsin (x).

II. **<u>Reciprocal</u>** functions are *renamed*.

 $(\sin x)^{-1}$ is called <u>cosecant</u> = $\frac{hypotenuse}{opposite}$ $(\cos x)^{-1}$ is called <u>secant</u> = $\frac{hypotenuse}{adjacent}$ $(\tan x)^{-1}$ is called <u>cotangent</u> = $\frac{adjacent}{adjacent}$

II. Y. Trig: Reciprocal Function vs. Inverse Function