Greatest Common Factor, Lowest Common Multiple Middle-Grades (+?)

To find Greatest Common Factor and Lowest Common Multiple of 80 and 150:

	Factor	Lists		Prime Factorization				
150		80		1,50		80		
1	150	1	80					
2	75	2	40	15	10	8	10	
3	50	4	20		~ -		~ -	
5	30	5	16	35	2 5	222	25	
6	25	8	10			- 1		
10	15			2•3	$3 \bullet 5^2$	2⁴ ●	5	
				-	-	I —	_	
Greatest	Common	Factor:	10	Greatest	Common	F actor: 2	. ●5	

III. Introducing the "divides" bar.

The statement " 6 | 18 " means "6 divides into 18 without remainder."

To find GCF, a smaller				To find LCM, a larger
number, write the		2•3•5 ²		number, write the
given numbers on the		1		given numbers on the
right of the "divides"	4	2 ⁴ • 5		left of the "divides" bar.
bars. The number in		Į		The number in the
the blank must be the			\	blank must be the
biggest collection of	1			smallest collection of
factors that will divide	-			factors that can be
into both prime				divided by both prime
factorizations.				factorizations.

Algebra example: Find GCF (think smaller) and LCM (think larger) for these expressions: $8a^3xz^2$ $12a^2bx^2z^2$

$$\begin{array}{c|c}
8a^3xz^2 \\
12a^2bx^2z^2
\end{array}$$