Distributivity and <u>NON</u>–Distributivity in Algebra

	$\left(2(x+3y)=2x+6y\right)$	multiplication		addition
GOOD:	4(w-3z) = 4w-12z	or	0	or
	$\frac{1}{3}(6a+b) = 2a + \frac{b}{3}$	division	V E	subtraction
	$\left(2x^2y^4\right)^3 = 8x^6y^{12}$	exponentiation	R	multiplication

WRONG: $(x + z)^2 = ?$ <u>NO</u>: $x^2 + z^2$ is <u>NOT OK</u>

Operation	Distributivity of Exponentiation	Distributivity of Square Root
Multiplication	$(3 \bullet 5)^2 = 225 = 3^2 \bullet 5^2$	$\sqrt{4\bullet 9} = \sqrt{4} \bullet \sqrt{9}$
Division	$\left(\frac{3}{5}\right)^2 = \frac{3}{5} \bullet \frac{3}{5} = \frac{3^2}{5^2}$	$\sqrt{36 \div 9} = \sqrt{36} \div \sqrt{9}$

Operation	<u>NON</u> –Distributivity of Exponentiation	<u>NON</u> –Distributivity of Square Root
Addition	$(x+y)^2 = x^2 + 2xy + y^2$ $\neq x^2 + y^2$	$\sqrt{4} + \sqrt{9} \neq \sqrt{4+9}$
Subtraction	$(x-y)^{2} = x^{2} - 2xy + y^{2}$ $\neq x^{2} - y^{2}$	$\sqrt{36} - \sqrt{9} \neq \sqrt{36 - 9}$

<u>Addition with equal addends is multiplication</u>, and **multiplication distributes over addition**.

<u>Multiplication with equal factors is exponentiation</u>, and **exponentiation distributes over multiplication**.

"Addition" above may be replaced with "subtraction." "Multiplication" above may be replaced with "division." "Exponentiation" above extends to real-number exponents.

So square roots, cube roots, etc.. distribute over multiplication and division, but <u>not</u> over addition and subtraction.

Main Idea:

Distributivity is <u>not</u> permitted whenever the notion just occurs to the human mind.

Next Main Idea:

Distributivity sometimes makes interesting (unexpected) changes when it **is** permitted...

EXOTIC (Unexpected) DISTRIBUTIVITY

DeMorgan's Laws for Sets and Logic

"The complement ~ of the <u>union</u> \cup of sets A and B equals the *intersection* \cap of the *separate* complements ~A and ~B"

In Symbols:
$$\sim (A \cup B) = (\sim A) \cap (\sim B)$$

Also,

$$\sim (A \cap B) = (\sim A) \cup (\sim B)$$

UNEXPECTED! UNEXPECTED! UNEXPECTED!

The distributivity switches the binary operations <u>union</u> and <u>intersection</u>.

The same laws apply in logic, where

- instead of <u>complement</u>, <u>negation</u> is the unary operation,
- instead of sets, statements are the elements
- instead of "union" and "intersection", "or" and "and" are the binary operations.

DeMoivre's Thorem

With a complex number written in polar form, $r \operatorname{cis} \theta$,

$$(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta)$$

Note that the exponent *n* distributes to *r* as an <u>exponent</u>, but to θ as a <u>coefficient</u>.

UNEXPECTED! UNEXPECTED! UNEXPECTED!

2