

Two Takes on Completing the Square

Dr. Stan Hartzler Archer City High School

On the right is some <u>inappropriate review</u> of a process that you learned, <u>and then were told to forget</u> *as* an agency for solving a quadratic equation. The process was mainly used to develop the world's leading method for solving a quadratic equation, namely, the quadratic formula. You were told, less often, that the skills involved would be used elsewhere. On the left is one of those "elsewheres": changing the form of a quadratic *function* as an aid in graphing. This page is an attempt to settle confusion about completing squares, namely,

When do we add to both sides, and when do we add <u>and</u> subtract from just one side?

Quadratic <u>function</u> $y = f(x) = ax^2 + bx + c$ in general.	Quadratic equation: $ax^2 + bx + c = 0$ in general.		
$y = f(x) = 2x^2 + 3x + 1$ (specific example)	$2x^2 + 3x + 1 = 0$ (specific example).		
when re-writing a quadratic function in vertex form.	when told to solve by completing the square, or		
Add and subtract on the same side here.	Add the same thing to both sides here.		
$(2 3 (1 3)^2) (1 3)^2$	when developing the quadratic formula from the		
$y = f(x) = 2\left(x^{2} + \frac{1}{2}x + \left(\frac{1}{2} \cdot \frac{1}{2}\right)\right) - 2\left(\frac{1}{2} \cdot \frac{1}{2}\right) + 1$	above equation you added $-c$ and later $\frac{b^2}{4ac}$ to		
	both sides.		

The answer is,

Worth noting:

- Quadratic <u>functions</u> on the left generate many pairs of values x, y and hence the parabola graphs.
- For the specific pairs when y = 0, the quadratic <u>function</u> suddenly becomes the quadratic <u>equation</u> on the right. The results are the points where the parabola hits the *x* axis.
- Thus the equation on the right is a specific subset of what is on the left.
- The graphed quadratic *function* is the <u>entire parabola</u>; the subset of that parabola graph of interest to *equation* solver consists of the <u>points where the parabola hits the *x* axis</u>.

Greatest Common Factor and Lowest Common Multiple: Making Sense of Prime Factorization

Schema per Dr. Dawn Slavens and MWSU Students

Reminder: Greatest Common Factor is usually **Smaller** than given numbers and Lowest Common Multiple is usually Larger than given numbers.

> To find GCF and LCM of $24a^3b^6c$ and $36a^4b$, rewrite 24 as $2^3 \cdot 3$ and 36 as $2^2 \cdot 3^2$.

To find GCF and LCM of $2^3 \bullet 3a^3b^6c$ and $2^2 \bullet 3^2a^4b$

smallest collection of each prime factor GCF found in either place

largest collection of each prime factor found in either place LCM

<u>Area</u>	Linear	Lateral Surface <u>Area</u>	<i>Total</i> Surface <u>Area</u>	Volume
(various formulas)		Base Perimeter × Height — (rectangle)	► Lateral Surface Area + Base Area(s)	prism or cylinder: Base <u>Area</u> × Height
A	R D P=C	cylinder: can label (rectangle)	cylinder: Dilbert head (rectangle + circles)	pyramid or cone: $\frac{BA \times H}{3}$
		cone: πrL where L = slant height	cone: $\pi rL + \pi r^2$ sphere: $4\pi r^2$	sphere: $\frac{4}{3}\pi r^3$

Q: Principles and Formulas for Surface Area and Volume

Connecting to Producing	Two points as for an <i>x-y</i> chart	Equation	Graph of line	Slope = m	
Starting with 🖘		With the two points in chart, add a third general point (x, y) .	Graph the points and connect with a line.	Chose either first or second <i>y</i> ; subtract other. Divide result	A
<u>Two points for an x-</u> <u>y chart</u>		Write slope two ways, and set those equal. Solve for <i>y</i> .		by difference of two <i>x</i> values, subtracted in the same order.	
Starting with 🖓	Make <i>x-y</i> chart, select two <i>x</i> values, and compute		Generate the two sets of coordinates as described to the	Solve for <i>y</i> , writing <i>x</i> term and constant term distinctly.	V
Equation of line	corresponding y \checkmark values.		left, graph, and connect with a line.	Coefficient of x is slope m .	
Starting with	Choose two points on line, and write these in <i>x-u</i> chart	With two points in chart (see cell to left), add general		Choose two points on line, and write these in <i>x-u</i> chart.	\sim
<u>Graph of line</u>		point (x, y) . Write slope two ways; set equal. Solve for y .		Follow instructions in the cell atop this column.	
Starting with 💎	Graph point. Move pencil up/down for y change, then	Put (x_1,y_1) in chart. Add second general point (x,y) . Set	Graph point. Move pencil up/down for y change, then left/		
$\frac{\text{Slope} = m^*}{\text{and point P} = (x_1, y_1).}$	left/right for x change, then mark new point.	$\frac{y - y_1}{x - x_1}$ equal to given <i>m.</i> Cross-multiply	right for <i>x</i> change, then mark new point. Connect two		
*If <i>m</i> is negative, assign negative sign to either numerator or denominator (never both) to start.					

Slope/Equation/Chart/Graph/Definition Extravaganza

Name	Circle	Ellipse	Ellipse Parabola	
System				
Eccentricity = e				
Ratio of focal length	e = 0?	0 < e < 1	e = 1	e > 1
to directrix distance				
Locus	equidistant from a	the sum of whose	which are	the difference of
	fixed point (center)	distances from two	equidistant from a	whose distances
Set of all possible		fixed points (foci) is	point (focus) and a	from two foci is
points		constant	line (directrix)	constant
Cone slice	perpendicular to	through one nappe,	parallel to one side	through both
	axis of cone	perpendicular to	of cone	nappes of cone
		cone axis		
				through nappe
	through nappe through nappe coincident w		coincident with side,	intersection,
Degenerate	Degenerate intersection, intersection, producing a		producing a line	producing two
	producing a point	producing a point		intersecting lines
General Equation	$(x-x_c)^2 + (y-y_c)^2 = r^2$	$(x-h)^2 (y-k)^2$	$y = ax^2 + bx + c$	$(x-h)^2 (y-k)^2$
		$\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$		$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$
degenerate	<i>r</i> = 0	a = b = 0	<i>a</i> = 0	a = b = 0

A Systematic Look at Conics

Dr. Stan Hartzler Archer City High School

Note that some mathematicians do not agree that a circle is a true conic. Others agree, but dislike the idea that a circle has eccentricity.

Conics Illustrated

	Ellipse	Parabola	Hyperbola	
illustration	$x = -\frac{a^2}{c}$ $x = \frac{a^2}{c}$	$a^{-1} = 4p$	auxiliary rectangle asymptotes	
latus rectum (a segment)	<i>Latus rectum</i> is the name of each vertical <u>segment</u> above. The length = $\frac{2b^2}{a}$ of each latus rectum is <i>focal width</i> .	Latus rectum is the name of the horizontal <u>segment</u> above. The length = a of the latus rectum is the focal width.	Latus rectum is the name of each vertical <u>segment</u> above. The length = $\frac{2b^2}{a}$ of each latus rectum is the <i>focal width</i> .	
directrix (a line)	Directrix is the name of each line parallel to the lateri recti and outside the ellipse. The parent equations of these are $x = \pm \frac{a^2}{c}$	<i>Directrix</i> is the name of the <u>line</u> parallel to the latus rectum the parabola. Its parent equation is $y = p = \frac{1}{4a}$	Directrix is the name of each line parallel to the latera recta and outside the hyperbola. The parent equations of these are $x = \pm \frac{a^2}{c}$	
vertices	<i>Vertices</i> are found at the end points of the major axis.		<i>Vertices</i> are where each branch meets the auxiliary rectangle.	

a is distance from "center" to farthest point (ellipse) or closest point (hyperbola). *c* is distance from center to focus points.

All circles and parabolas are similar figures.

All ellipses with the same eccentricity are similar. All hyperbolas with the same eccentricity are similar.

	Ingonometric identities connections					
	The Six Basics Double-Angle Power-Reducing		ing	Half-angle		
ſ	$(\sin(u+v) = \sin u \cdot \cos v + \sin v \cdot \cos u)$ Use sum form		From the * form	ulas in	Replace u with $\frac{u}{2}$ in	
	$\sin(u-v) = \sin u \cdot \cos v - \sin v \cdot \cos u$	let $u = v$	the previous column:			
	$\cos(u+v) = \cos u \cdot \cos v - \sin u \cdot \sin v$	$\sin 2u = 2\sin u \cos u$	$\sin^2 u = \frac{1 - \cos 2u}{1 - \cos 2u}$		previous column, and	
	$\cos(u-v) = \cos u \cdot \cos v + \sin u \cdot \sin v$	$\cos 2u = \cos^2 u - \sin^2 u$	$\sin u = \frac{1}{2}$		do square root.	
	The tan θ formulas below come	$= 2\cos^2 u - 1^*$	$1 + \cos^2 u = 1 + \cos^2 u$	s2u	$u = \sqrt{1 - \cos u}$	
	from $\sin\theta/\cos\theta$ used on the	$= 1 - 2\sin^2 u *$	$\cos u = \frac{2}{1 - \cos 2u}$		$\sin \frac{1}{2} = \pm \sqrt{\frac{2}{1 + 2}}$	
	preceding formulas.	$\tan(2u) - \frac{2\tan u}{2\tan u}$				
	$\tan(u+v) = \tan u + \tan v$	$1 - \tan^2 u$	$\tan u = \frac{1+\cos 2}{1+\cos 2}$	$\frac{1}{2u}$	$\cos\frac{u}{2} = \pm \sqrt{\frac{1+\cos u}{2}}$	
	$\tan(u+v) = \frac{1}{1-\tan u \tan v}$	*These come from				
	$\tan (u - u)$ $\tan u - \tan v$	substitution with	* From where?		$\frac{u}{1-\cos u}$	
	$\tan(u-v) = \frac{1}{1+\tan u \tan v}$	$\sin^2\theta + \cos^2\theta = 1$			$\frac{1}{2} \sqrt{1 + \cos u}$	
	Product-to-Su	m	Sum-to-Product			
	Multiply third formula above by	r –1; add result to	Preliminary	Now s	ubstitute these into the	
1 I	fourth formula and solve for sin	u sinv.	shoveling:	Produ	ct-to-Sum formulas and	
	$\sin u = \frac{1}{2} \left[\cos(u - y) - \cos(u + y) \right]$		Let $x = u + v$	solve fo	or the sum or difference:	
	$\frac{\sin u \cdot \sin v}{2} = \frac{-[\cos (u - v) - \cos (u + v)]}{2}$		and y = u - v.	sinr⊥s	in $y = 2\sin\left(\frac{x+y}{y}\right)\cos\left(\frac{x-y}{y}\right)$	
	Add third and fourth formulas a	bove and solve for	Add those two	51117 + 5	$\lim y = 2 \lim_{n \to \infty} \left(\frac{2}{2} \right)^{2} \left(\frac{2}{2} \right)$	
T	$\frac{1}{\left[\cos(\theta - y) + \cos(\theta - y)\right]}$		equations:		(x+y) $(x-y)$	
	$\frac{\cos u - \cos v - \frac{-[\cos u - v] + \cos(u + v)]}{2}$		x + y = 2u	$\sin x - \sin x$	$\operatorname{in} y = 2\cos\left(\frac{y}{2}\right)\sin\left(\frac{y}{2}\right)$	
	-Add first and second formulas a	bove and solve for	so $u = \frac{x+y}{x+y}$		(
1	$\sin u = \frac{1}{\left[\sin(u+v) + \sin(u-v)\right]}$		2	$\cos x + c$	$\cos y = 2\cos\left \frac{x+y}{2}\right \cos\left \frac{x-y}{2}\right $	
	$\frac{\sin u \cos v}{2} = \frac{-\left[\sin(u+v) + \sin(u-v)\right]}{2}$		Subtract those			
I∢	Multiply second formula above	by -1 ; add result to	two equations:	$\cos x - \cos x$	$\cos y = -2\sin\left(\frac{x+y}{y}\right)\sin\left(\frac{x-y}{y}\right)$	
	first formula and solve for cos <i>u</i> sin <i>v</i> .		$\mathbf{x} - \mathbf{y} = 2\mathbf{v}$			
	$\frac{1}{\left[\sin(u+y)-\sin(u-y)\right]}$		so $v = \frac{x-y}{x-y}$			
	$\frac{\cos u - \sin (u - v)}{2} = \frac{1}{2} [\sin (u + v) - \sin (u - v)]$		2			

Trigonometric Identities Connections