Greatest Common Factor, Lowest Common Multiple

Dr. Stan Hartzler Archer City High School

To find Greatest Common Factor and Lowest Common Multiple of 80 and 150:

Factor Lists				Prime Factorization			
150		80		150	80		
1	150	1	80				
2	75	2	40	<u>1</u> 5 10	8 10		
3	50	4	20				
5	30	5	16	3 5 2 5	2 2 2 2 5		
6	25	8	10		- 4		
10	15			$2 \cdot 3 \cdot 5^2$	$2^4 \bullet 5$		
					1		
G reatest	Common	Factor:	10	Greatest Common	Factor: 2•5		

III. Introducing the "divides" bar.

The statement "6 | 18" means "6 divides into 18 without remainder."

To find GCF, a smaller				To find LCM, a larger
number, write the		2•3•52		number, write the
given numbers on the				given numbers on the
right of the "divides"	4	2 ⁴ • 5		left of the "divides" bar.
bars. The number in		1		The number in the
the blank must be the			\	blank must be the
biggest collection of	1			smallest collection of
factors that will divide	▼			factors that can be
into both prime				divided by both prime
factorizations.				factorizations.

Algebra example: Find GCF (think smaller) and LCM (think larger) for these expressions: