Limits Outline AB Calculus I -- Spring 1995

Dr. Hartzler

2.1 Calculator explorations

Fact: $\lim_{x \to 0} \underline{-\sin_x} = 1$

Limits: left/right/both for functions (p. 49 25-30) Pictorial/graph limits left/right/both (p. 49 31-40) Piecewise (p. 49 41-46)

- 2.2 Definition of a limit of a function as $x \rightarrow a$ "Proof" (example 1, pp. 54-55). We identified these steps:
 - 1. Task statement
 - 2. ε-tolerance statement
 - 3. Work to $|x a| < g(\varepsilon)$ form
 - 4. Choose appropriate $\delta \leq g(\epsilon)$
 - 5. Work $|x a| < g(\epsilon)$ forward to $0 < |f(x) L| < \epsilon$ form
- 2.3 Techniques for lim as x→a Basic Theorems Basic substitution Algebraic specials: factoring/reducing; addition, rationalization of numerator Proof of "Limit of sum = sum of limits" (supply pieces or reasons only) Triangle inequality Sandwich theorem pp. 64-65 do Thursday 2/16
- 2.4 Limits involving ∞ Limits at $\infty (\pm \infty)$ as $x \rightarrow a$ Limits as $x \rightarrow \pm \infty$
- 2.5 Continuity

Definition of f(x) being continuous at c if three conditions are met:

- 1) f(c) is defined (not $\pm \infty$ or division by zero or $\sqrt{}$ of negatives, etc.)
- 2) $\lim f(x)$ exists as $x \rightarrow c$
- 3) $\lim_{x \to c} f(x) = f(c) \text{ as } x \rightarrow c$

Theorem 2.21

Theorem 2.26 and do 55-58 Thursday 2/16